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Parts of this assignment adapted from one by Julie Zelenski and Jerry Cain.
Thanks to Michael Chang for his input on streaming top-k.

We’ve spent a lot of time talking about searching, sorting, and runtime complexity. This assignment is de-
signed to give you a sense of how to combine those ideas together in the service of something larger: div-
ing deep into data sets. Over the course of this assignment, you’ll build out a set of algorithms and data
structures for processing large data sets. Once you’ve gotten them working, you’ll get to see them in action
as they power four data analyses.

Due Friday, February 21st at 11:30AM.
You are welcome to work on this assignment in pairs.

This assignment has four parts:

• Combine:  You have a large collection of sorted sequences you want to assemble into a single
sorted sequence. We could just toss everything together into a list and sort it from scratch, but
there’s a faster way to combine multiple sorted sequences.

• Array Exploration: This debugging exercise is designed to get you comfortable exploring arrays in
memory and seeing what lies beyond them.

• HeapPQueue: This workhorse of a data structure is useful for finding the best objects of various
types. It’s a powerful tool in its own right and can be used as a building block in other algorithms.

• Streaming Top-k: A clever algorithm that finds the k best objects of a given type, and does so re-
markably quickly.

As usual, we suggest making slow and steady progress. Here’s our recommended timetable:

• Aim to complete the Combine algorithm by Thursday, February 13th. We’ll have covered every-
thing you need to know to solve this problem when this assignment goes out, but since we imagine
you’ll be studying for and then decompressing from the midterm, we figured there wasn’t much
rush in getting it started. 😃

• Aim to start the debugging exercise on Thursday, February 13th and complete it by Friday, Febru-
ary 14th. This debugging exercise references topics discussed in the lecture on Wednesday, Febru-
ary 12th, so starting it earlier than that might not be a good idea.

• Aim to start HeapPQueue on Friday, February 14th, with the goal of completing it on Wednesday,
February 19th. This part of the assignment requires knowledge of topics covered on Friday, Febru-
ary 14th, so we don’t recommend starting it before then.

• Aim to start Streaming Top-k on Wednesday, February 19th with the goal of complete Streaming
Top-k by Thursday, February 20th. This part of the assignment builds on the HeapPQueue, so you
probably shouldn’t attempt it before then.



Problem One: Combine
Suppose you have several lists of numbers, each of which is already in sorted order. You want to combine
those lists together into one giant list, also in sorted order. How should you do this?

One approach would be to ignore the fact that we know these lists are already sorted and to do the follow-
ing: create a giant Vector holding all the numbers, then sort it with mergesort in time O(n log n). This
works, but by harnessing the fact that the input sequences are already sorted we can improve on this.

If you’ll recall, mergesort works by recursively breaking the input array down into a bunch of tiny se-
quences, then using the  merge algorithm to combine all those sequences back together into one giant,
sorted sequence. Here, we already have the input broken down into smaller sorted sequences, and so we
just need to do that second step of mergesort, merging things back together, to finish things off.

Let’s imagine that we have k sequences that collectively have n total elements in them. We can follow the
lead of mergesort to sort those sequences together:

• Split those k sequences apart into two groups of roughly k / 2 sequences each.

• Recursively combine each of those groups of sequences, forming two large sorted sequences.

• Using the merge algorithm from class, merge those two large sequences together.

Here’s an example illustrating how to combine six sorted sequences (k = 6) with twenty total elements
across them (n = 20) into one giant sorted sequence. For convenience, these are sequences of integers.

With a little bit of creativity you can prove that the runtime for this approach is O(n log k). In the case
where you have a small number of sequences (low k) with a large total number of elements (large n), this
can be dramatically faster than resorting things from scratch! For example, if n is roughly one million and
k is, say, ten, then this combine algorithm will be roughly ten times faster than a regular mergesort.

Milestone 1: Implement Combine

Your task is to implement a function

Vector<DataPoint> combine(const Vector<Vector<DataPoint>>& dataPoints)

that takes as input a list containing zero or more lists of data points, then uses the above algorithm to
combine them into one giant sorted sequence. The DataPoint type is a defined in Demos/DataPoint.h
as follows, which you’ll use throughout this assignment:

struct DataPoint {                                                             
    string name;   // Name of this data point; varies by application           
    int weight;    // "Weight" of this data point. Points are sorted by weight.
};                                                                             
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You can assume that the sequences of data points provided to you are sorted in nondecreasing order by
their weight fields (that is, each data point’s weight is at least as large as the preceding point’s weight),
and your resulting sequence should also be sorted by weight.

Here’s the first milestone you need to reach:

Milestone 1: Get a working implementation of the combine function. 

1. Add at least one custom test to Combine.cpp using ADD_TEST. We recommend doing this
first, since it’s a great way to confirm you understand what’s being asked of you.

2. Implement combine from Combine.cpp using the following recursive strategy:

• Split the list of sequences into two groups with roughly the same number of sequences.

• Recursively combine each of those groups together, forming two sorted sequences.

• Use the merge algorithm to merge those resulting sequences into one overall sequence.

3. Test your code thoroughly to make sure that it works correctly.

Some notes on this problem:

• A key step in solving this problem will be implementing the merge algorithm. The version of
merge that we outlined in class worked by repeatedly removing the first elements of the sequences
to merge. Be careful – the Vector::remove function takes time O(n) if you remove the first ele-
ment of a  Vector, which is too slow for what we need. See if you can find a way to solve this
problem without using Vector::remove.

• There may be multiple DataPoints that have the same weight. If that’s the case, you should keep
each of them in the resulting sequence, and you can break ties in weights arbitrarily.

• The sequences to combine aren’t required to have the same size. Some of them may be gigantic.
Some of them might be empty.

• It’s legal to combine a list of zero sequences. What do you think you should return in this case?

• The C++ standard libraries contain a function std::merge that implements the merge algorithm
from class. For the purposes of this assignment,  please refrain from using that function. We’re
specifically interested in seeing you code this one up yourself.

Milestone 2: Ensure Combine Runs Quickly

The testing framework we’ve provided you this quarter is great for checking whether the code you’ve
written works correctly. Now that we’ve started talking about efficiency, you’ll also need to make sure that
your code has the proper big-O runtime. As a refresher, the code you write here should run in time
O(n log k), where n is the total number of elements across all the lists and k is the number of lists.

What, exactly, does O(n log k) mean? It might help to imagine that n is allowed to vary, while k stays con-
stant. If you have a small value of k, then log k is also small, and as n varies you’ll get a plot of a straight
line with a small slope. As  k increases, you’ll see the slope of that line starting to increase, but not by
much because log k grows extremely slowly. In particular, if you look at values of k that grow exponen-
tially quickly (say, k = 1, 4, 16, 64, 256, 1024), the slope of the lines you see should appear to increase by
some fixed rate.

To help you confirm that you have indeed met this runtime bound, we’ve bundled a runtime plotter along
with the starter files. You can select it using the “Time Tests” button at the top of the demo app and then
choosing the “Combine” button. You’ll then see a graph of the runtime of your combine function over a
range of different values of n and k. The coordinate axes are on a standard linear scale, and the values of
k that are shown go up by a factor of four on each run. So take a look a the runtime plots you’re getting
back. Are they consistent with your function running in time O(n log k)?
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If you have questions about this, you’re welcome to stop by the CLaIR (the Conceptual LaIR, which runs
in parallel with the regular LaIR queue) to talk through these questions with one of the section leaders.
Once you have a sense of what you think you should see, confirm that your runtime plots match what’s
expected. If so, great! If not, take a look back at your code. Think about where the inefficiencies might be
coming from.

Milestone 2: Ensure your code runs in time O(n log k), where n is the total number of elements and
k is the number of different sequences.

1. Choose the “Time Tests” option from the top menu, then choose “Combine.”

2. Run the time tests and look at the plots you get back. Is what you’re seeing consistent with a
runtime of O(n log k)? If so, great! If not, use those plots to form a hypothesis of what the
runtime is, then go back to your code and see if you can spot the source of the inefficiency.
Don’t forget to run the regular tests whenever you make a change to the code; you need to
both have efficient code and correct code.

A note on the runtime plots – we’ve deliberately left off the labels on the y-axis because the absolute run-
times of your code (that is, what you’d see if you ran it with a stopwatch) are less important from a big-O
perspective than the relative runtimes of your code (that is, how those runtimes scale). We don’t have any
target wall-clock runtimes in mind for this assignment, since that would depend on a bunch of factors like
what computer you’re using and whether it’s plugged in.
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Problem Two: Beyond the Bounds of Arrays
(This section assumes you’re familiar with the topics from lecture on Wednesday, February 12th.)

The next part of this assignment deals with pointers and dynamic allocation, and that introduces some
new types of errors you’ll need to learn to smoke out using the debugger. To get more familiar with what’s
going on, we’re going to ask you to work the debugger to explore arrays and what you can find when you
walk off the end of them.

Open the source file ExploreArrays.cpp. That file contains a function named exploreArrays. You’ll
trace this function in the debugger. The reason we’d like you to explore this function is that we’d like you
to see what arrays look like in memory in a controlled environment before you encounter memory issues
“in the wild” (that is, when writing up your own code). It’s similar to how we wanted you to explore stack
overflows in a simpler setting before turning you loose on writing your own recursive code.

Here’s what you need to do.

1. Set a breakpoint at the top of exploreArrays in ExploreArrays.cpp.

2. Run the program with the debugger turned on, choose the “Explore Arrays” option from the
top menu, then click “Go!” to trigger the breakpoint. Follow the instructions in ExploreAr-
rays.cpp and write your answers in res/ShortAnswers.txt.

5 / 18



Problem Three: Priority Queues and Binary Heaps
(This section assumes you’re familiar with the topics from lecture on Friday, February 14th.)

Now that we're discussing class implementation techniques, it's time for you to implement your own col-
lection class: the priority queue. A priority queue is a modified queue in which elements are not dequeued
in the order in which they were inserted. Instead, elements are removed from the queue in order of prior-
ity. For example, you could use a priority queue to model a hospital emergency room: patients enter in
any order, but more critical patients are seen before less critical patients, regardless of how long the less-
critical  patients  have been waiting.  Similarly,  if  you were  building a  self-driving car  that  needed to
process events, you might use a priority queue to respond to important messages (say, a pedestrian just
walked in front of the car) before less important messages (say, a car switched on its turn signal).

Here’s the interface for the HeapPQueue type (we’ll explain the name in a minute):

class HeapPQueue {
public:
    HeapPQueue();
    ~HeapPQueue();

    void enqueue(const DataPoint& data);
    DataPoint dequeue();
    DataPoint peek() const;

    bool isEmpty() const;
    int  size() const;

    void printDebugInfo();

private:
    /* Up to you! */
};

Looking purely at the interface of this type, it sure looks like you’re dealing with a queue. You can en-
queue elements, dequeue them, and peek at them. The difference between a priority queue and a regular
queue is the order in which the elements are dequeued. In a regular Queue, elements are lined up in se-
quential order, and calling dequeue() or peek() gives back the element added the longest time ago. In
the HeapPQueue, the element that’s returned by dequeue() or peek() is the element that has the lowest
weight. For example, let’s imagine we set up a HeapPQueue like this:

HeapPQueue hpq;                
hpq.enqueue({ "Amy",    103 });
hpq.enqueue({ "Ashley", 101 });
hpq.enqueue({ "Anna",   110 });
hpq.enqueue({ "Luna",   161 });

If we write

DataPoint data = hpq.dequeue();
cout << data.name << endl;     

then the string printed out will be  Ashley, since of the four elements enqueued, the weight associated
with Ashley (101) was the lowest. Calling hpq.dequeue() again will return {"Amy", 103}, since her as-
sociated weight (103) was the lowest of what remains. Calling hpq.dequeue() a third time would return
{"Anna", 110}.

Let’s insert more values. If we call hpq.enqueue({"Chioma", 103}) and then hpq.dequeue(), the re-
turn value would be the newly-added {"Chioma", 103} because her associated weight is lower than all
others. And note that Chioma was the most-recently-added TA here; just goes to show you that this is
quite different from a regular Queue!
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You’ll implement HeapPQueue using a data structure called
a binary heap, hence the name HeapPQueue. Binary heaps
are best explained by example. To the right is a binary heap
containing a collection of current and former TAs, each of
whom is  associated  with  a  number  corresponding  to  the
class that they TAed for.

Let's look at the structure of this heap. Each value in the
heap is stored in a  node, and each node has zero, one, or
two  child nodes descending from it. For example, Ashley
has two children (Kate and Amy) while Kali has just one
child (Luna) and Julia has no children at all.

In a binary heap, we enforce the rule that every row of the heap, except for the last, must be full. That is,
the first row should have one node, the second row two nodes, the third row four nodes, the fourth row
eight nodes, etc., up until the last row. Additionally, that last row must be filled from the left to the right.
You can see this in the above example – the first three rows are all filled in, and only the last row is par -
tially filled. Here are two other examples of binary heaps, each of which obey this rule:

We also enforce one more property – no child node’s weight is less than its parent’s weight. All three of
the heaps you've seen so far obey this rule. However, there are no guarantees about how nodes can be or-
dered within a row; as you can see from the examples, within a row the ordering is pretty much arbitrary.
  

To recap, here are the three rules for binary heaps:

• Every node in a binary tree has either zero, one, or two children.

• No child’s weight is less than the weight of its parent.

• Every row of the heap, except the last, is completely full, and the
last row’s elements are as far to the left as possible.

Before moving on, edit the file res/ShortAnswers.txt with answers to the following question.

Q3: Draw three different binary heaps containing the DataPoints given in the example on the
right-hand side above (the one containing Jackie, Jermaine, etc.) Yes, we know that we’re ask-
ing you to draw pictures in a text file. Here’s an example of what that could look like

                             Person A
                              Weight

                            /        \

                       Person B    Person C
                        Weight      Weight

                      /        \

                   Person D    Person E
                    Weight      Weight    

Maya Ziv, one of the SLs this quarter, suggests using this website to draw the binary heaps.   
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It is easy to read off which element has the smallest weight in a binary heap – it's the one at the top. It is
also efficient to insert an element into a binary heap. Suppose, for example, that we have this binary heap
containing some famous satellites:

Let's add the San Marco, the first Italian satellite, to this heap with weight 1964. Since a binary heap has
all rows except the last filled, the only place we can initially place San Marco is in the first available spot
in the last row. This is as the left child of Japan’s first space probe 大隅, so we place the new node for San
Marco there:

At this point, the binary heap is invalid because San Marco’s weight (1964) is less than that of 大隅
(1970). To fix this, we run a bubble-up step and continuously swap San Marco with its parent node until
its weight is at least that of its parent’s. This means that we exchange San Marco and 大隅, shown here:

Since San Marco’s weight (1964) is greater than its parent’s weight (1957), it’s now in the right place, and
we’re done. We now have a binary heap containing all of the original values, plus San Marco.

Let's suppose that we now want to insert Explorer, the first US space probe, into the heap with weight
1958. We begin by placing it at the next free location in the last row, as the right child of San Marco:
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We then bubble Explorer up one level to fix the heap:

And, again, have a new heap containing these elements. As a final example, suppose that we want to insert东方红, the first Chinese space probe, into this heap with weight 1970. We begin by putting it into the first
free spot in the last row, which in this case is as the left child of the Israeli satellite אופק:

We now do a bubble-up step. We first swap 东方红 and אופק to get

Notice that ’东方红 s weight is still less than its new parent’s weight, so it’s not yet in the right place. We
therefore do another swap, this time with the Indian satellite आर्यXभट, to get

This step runs very quickly. With a bit of math we can show that if there are n nodes in a binary heap,
then the height of the heap is at most O(log n), and so we need at most O(log n) swaps to put the new ele-
ment into its proper place. Thus the enqueue step runs in time O(log n). That’s pretty fast! Remember that
the base-2 logarithm of a million is about twenty, so even with a million elements we’d only need about
twenty swaps to place things!
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Before moving on, answer the following question in res/ShortAnswers.txt:

Q4: Draw the binary heap formed by inserting these nine DataPoints into an empty binary
heap using the algorithm described above. Specifically, insert those data points in the order
that’s shown below. You only need to show your final answer, not your intermediate steps.

{ "R", 4 }
{ "A", 5 }
{ "B", 3 }
{ "K", 7 }
{ "G", 2 }
{ "V", 9 }
{ "T", 1 }
{ "O", 8 }
{ "S", 6 }

There are many binary heaps you can form that contain these elements, but only one of
them will be what you get by tracing the algorithm.

We now know how to insert an element into a binary heap. How do we implement dequeue? We know
that the minimum-weight element of the binary heap is atop the heap, but we can't just remove it – that
would break the heap into two smaller heaps. Instead, we use a more clever algorithm. First, we swap the
top of the heap, the original Soviet satellite Спутник, with the rightmost node in the bottom row of the
heap (אופק) as shown here:

Now, we can remove Спутник from the heap, which is the element we’ll return. We now have this:

Unfortunately, what we are left with isn’t a binary heap because the top element (אופק) is one of the high-
est-weight values in the heap. To fix this, we will use a bubble-down step and repeatedly swap אופק with
its lower-weight child until it comes to rest. First, we swap אופק with Explorer to get this heap:
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Since אופק is not at rest yet, we swap it with the smaller of its two children (San Marco) to get this:

And we're done. That was fast! As with enqueue, this step runs in time O(log  n), because we make at
most O(log n) swaps. This means that enqueuing n elements into a binary heap and then dequeuing them
takes time at most O(n log n). This method of sorting values is called heapsort.

To confirm that this makes sense, answer this question in res/ShortAnswers.txt:

Q5: Draw the binary heap that results from following this dequeue procedure on the heap
you drew in Q4 of this problem.

How do we represent a binary heap in code? Amazingly, we can implement the binary heap using nothing
more than a dynamic array. “An array‽,” you might exclaim. “How is it possible to store that complicated
heap structure inside an array‽” The key idea is to number the nodes in the heap from top-to-bottom, left-
to-right. For example, we might number the nodes of the previous heap like this:

This numbering system has some amazing properties:

• Given a node numbered n, its children (if any) are numbered 2n and 2n + 1.

• Given a node numbered n, its parent is numbered n / 2, rounded down.

You can check this yourself in the above tree. That's pretty cool, isn't it? The reason that this works is that
the heap has a rigid shape – every row must be filled in completely before we start adding any new rows.
Without this restriction, our numbering system wouldn't work.

Because our algorithms on binary heaps only require us to navigate from parent to child or child to parent,
it's possible to represent binary heap using just an array. Each element will be stored at the index given by
the above numbering system. Given an element, we can then do simple arithmetic to determine the in-
dices of its parent or its children. For example, we’d encode the above heap as the following array:

11 / 18



The enqueue and dequeue algorithms we have developed for binary heaps translate beautifully into algo-
rithms on the array representation. For example, suppose we want to insert Astérix, the first French satel-
lite, into this binary heap with weight 1965. We begin by adding it into the heap, as shown here:

Notice that Astérix is at index 8, which is the last position in the array. This is not a coincidence; when-
ever you add a node to a binary heap, it always goes at the end of the array. (Do you see why?)

We then bubble Astérix up into its final position by repeatedly comparing it to its parent. Since Astérix is
at position 8, its parent (आर्यXभट) is at position 4. Since Astérix precedes आर्यXभट, we swap them:

Astérix’s parent is now at position 2 (东方红), so we swap Astérix and 东方红 to get the final heap:

12 / 18



To confirm that this all makes sense, answer the following question in res/ShortAnswers.txt:

Q6: Draw the array representation of the binary heap that you drew in Q5.

Now, let’s talk about the coding assignment.

Your task is to implement this data structure to power the HeapPQueue type. Although in practice you
would layer this class on top of the Vector, for the purposes of this assignment you must do all of your
own memory management. This means that you must dynamically allocate and deallocate the underlying
array in which your heap is represented.

Here is our recommendation for how to complete this part of the assignment.

1. Start off by adding any private member variables you’ll need to HeapPQueue.h. You
know you’ll at a bare minimum need to define something to hold the elements in the
heap.  We recommend you start  there,  since  without  adding member  variables  you
won’t be able to store anything.

2. Implement the constructor in a way that allocates a initial amount of space for the ele-
ments of the heap. We recommend picking a medium-sized array to begin with (say,
around size 100), though you’ll probably drop that to something lower later on. Then,
implement size and isEmpty, which should each probably be a single line long.

3. To test whether your code works correctly, choose the “Interactive PQueue” option
from the top menu bar. This will let you create and issue commands to a HeapPQueue
using a graphical interface. Confirm that you can create a HeapPQueue and that size
and isEmpty behave as expected (size should return 0, isEmpty should return true).

4. Implement  enqueue using the bubble-up algorithm. Then, implement  printDebug-
Info in a way that will let you confirm that your code works correctly. For now, don’t
worry about what happens if you run out of space in your dynamic array; you’ll patch
this up later. Head back to the Interactive PQueue option and test out your enqueue
code by enqueuing a bunch of values, working out with a pencil and paper what the ar-
ray contents should look like, and then using printDebugInfo to confirm things work.

5. Implement dequeue using the bubble-down algorithm. Run some initial tests using the
Interactive PQueue feature and a pencil and paper, as before. Once that seems to be
working, run the full automated test suite and see what happens. If you’re passing all
the tests, except for the tests that require your HeapPQueue to hold thousands of ele-
ments and the ones that check for memory leaks, move on to the next step. Otherwise,
iterate and debug until things are working.

6. Change your implementation of enqueue to grow the dynamic array when more space
is needed, and implement the HeapPQueue destructor. Change the original size of your
array down to something much smaller (say, four or five elements) and use a mix of the
automated test suites and the Interactive PQueue to confirm that your code works as in-
tended. Move on to the next step once all the tests pass.

7. Use the Time Tests feature to confirm that the cost of doing n enqueues followed by n
dequeues is indeed O(n log  n). If not, look back over your code and see if you can
spot the source of the inefficiency.

8. Add in at least one custom test of your own, just to make sure that you’ve covered all
the cases you need to cover.
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Some notes on this part of the assignment:

• The indices in our array-based heap start at one. C++ arrays are zero-indexed. You’ll need to be
clever about how you store things. There are many ways to do this – perhaps you will have a
dummy element at the start of your array, or perhaps you'll adjust the math to use zero-indexing –
but be sure that you keep this in mind when designing your implementation.

• You are, of course, welcome to define private helper functions in HeapPQueue.h. However, please
do not change the signatures of any of the functions that we have provided to you.

• If multiple data points are tied for the same weight, you can break those ties however you’d like.

• Read over the comments in HeapPQueue.h, which detail what all of the member functions need
to do. They’re there for a reason. 😃

• The C++ standard libraries contain functions std::push_heap and std::pop_heap. For the pur-
poses of this assignment, please refrain from using those functions.
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Problem Four: Streaming Top-k
(This part of the assignment requires you to have HeapPQueue working, so we recommend doing it last.)

In the previous part of this assignment, you implemented the HeapPQueue type. Your interactions with
the HeapPQueue were focused on getting the thing working, not writing code that takes advantage of what
the HeapPQueue has to offer.

In this last part of the assignment, you’ll  switch hats and become a  client of your  HeapPQueue type.
Specifically, you’re going to implement an algorithm that uses the HeapPQueue as a building block. This
will be similar to what you did in Assignment 2, Assignment 3, and Assignment 4 when you interacted
with types like Vector and HashMap – you used those types to solve problems without thinking too much
about how those types were actually implemented.

The problem we’d like you to solve here is called the streaming top-k problem, and it’s defined like this:

☞    Given a stream of data points, find the k elements in that data stream with the highest weight.    ☜
Your task, specifically, is to implement a function

Vector<DataPoint> topK(istream& stream, int k);

that takes as input a data stream and a number k, then returns the k data points from that stream with the
highest weight. If there are fewer than k elements in the data stream, you should return all the elements in
that stream. The items should be returned in descending order of weight, so the zeroth element of the re-
turned Vector should be the highest-weight data point, the first should be the data point with the highest
weight less than that, etc.

You might have noticed that the input to this function is not provided by a  Vector<DataPoint>, but
rather by an istream, which is usually something you’d hook up to a file or to the console. Why is this?

Imagine you’re working at Google and have a file with how many times each search query was made in a
given day. You want to find the 1,000 most popular searches made that day. Google gets billions of search
queries in a day, and most computers simply don’t have the RAM to keep all those queries in memory at
once. That would mean that you couldn’t create a Vector<DataPoint> to hold all the data points from
the file; it would take up more memory than your computer has available!1

When you read data from a file stream in C++, on the other hand, the full contents of that stream don’t all
have to be held in memory at the same time. Instead, whenever you try reading data from the stream, the
stream calls out to your computer’s hard drive to get a bit more information.2 This means that you can
process the elements from a data file one at a time without filling up your computer’s memory; the space
to hold each element from the file gets recycled each time you pull in a new element.

In the case of this problem, your goal is to implement your function such that you can find the top k ele-
ments using only O(k) space; that is, space proportional to the number of elements you’ll need to return.
In other words, if you wanted the top 1,000 search queries from Google, it wouldn’t matter that there are
billions or tens of billions of search queries per day. You’d only need to use enough space in RAM to hold
about a thousand or so of them.

As a reminder, you can read one element at a time from an istream using this general pattern:

for (DataPoint pt; in >> pt; ) {  
    /* … do something with pt … */
}                                 

Your solution should not only use little space; it should also run quickly. Specifically, the runtime of your
algorithm should be O(n log k), where n is the number of elements in the data stream.

1 Technically, due to the wonder that is  virtual memory, you actually could create this  Vector. It would just degrade the
performance on your machine so much that everything would grind to a seeming halt.

2 Technically, the stream usually uses a technique called buffering where, whenever you ask for data, it reads more data than
you need from disk. Reading from disk is much, much slower than reading from memory, and this design helps reduce the
amount of time spent asking the hard drive for data.
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Here’s what you need to do for this part of the assignment:

1. Implement the the topK function in TopK.cpp. You will need to use the HeapPQueue type
that you built in the previous part of this assignment in the course of doing this. However,
you should not modify the files HeapPQueue.h or HeapPQueue.cpp to solve this problem
(unless, of course, you’re fixing bugs in the HeapPQueue type).

2. Add at least one custom test case – and, ideally, many more – and test your code thoroughly
using the test suite.

3. Use the “Time Test” feature to see how fast your code runs, and confirm that the runtimes
are consistent with what you’d expect to see in a piece of code whose runtime is O(n log k),
where n is the number of elements and k is the input parameter to topK.

Here’s some hints to help you get started:

• Just to make sure you didn’t miss it, we want you to return the highest-weight elements from the
data stream sorted in descending order, which is the reverse of what we’ve asked you to do else-
where in this assignment.

• Think about how you might solve this problem if you just wanted to find the highest-weight data
point in the stream. How would you go about solving that problem using a  HeapPQueue? Now
imagine you want to find the top two. How would you do that?

• The runtime bound of O(n log k) might actually give you a hint about how to solve this problem.
There are n total elements to process, which means that you can only do O(log k) work per ele-
ment from the data stream.

• You can assume the data stream only has  DataPoints in it and don’t need to handle the case
where the stream contains malformed data.

• Inserting elements into a  Vector using Vector::insert or removing elements from a Vector
using Vector::remove will take time O(n) if you insert or remove elements from the beginning
of the Vector. Be careful when using these functions, since they can degrade performance.

• Be careful – you can only consume the elements of an istream once. This means that, for each
test you run, you can only call  topK on a stream once. If you call  topK a second time on that
stream, the stream will appear empty and topK will return a different value than the one you got
the first time you called topK.

As with the other parts of this assignment, you must write at least one custom test case for this part of
the assignment, and, ideally, should include more than just one. Also, be sure to run the time tests. You
should have a sense of the general shapes of the curves you should expect to see, since you already saw
some curves from an O(n log k)-time algorithm earlier in this assignment.
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(Optional) Problem Five: Explore Some Data Sets!
The starter files we’ve provided you with in this assignment include four demos that use your code – your
implementation of combine, the HeapPQueue, and your implementation of topK – to explore large data
sets. Once you’ve finished the previous parts of this assignment, feel free to play around with these demos
to see your code in action!

• Child Mortality: The United Nations Millennium Development Goals were a set of ambitious tar-
gets  for improving health  and welfare across  the globe.  Over twenty-five years,  the UN kept
records of child mortality data worldwide. How did those numbers change since when they started
keeping track in 1990 to when the most recent public numbers were released in 2013?

• Earthquakes: The US Geological Survey operates a global network of seismometers and pub-
lishes lists of earthquakes updated every hour. Where are these earthquakes? How big are they?

• Women’s 800m Freestyle: The women’s 800m freestyle swim race was introduced as a competi-
tive event in the 1960s. How have the fastest times in that event improved since then? A certain
Stanford-affiliated athlete might make an appearance here.

• National Parks: The US National Parks Service runs America’s national parks, national monu-
ments,  national  recreation areas,  national  seashores,  etc.  How many people visit  those parks?
Which ones are most popular? What trends can you detect by looking at those numbers?

There are no deliverables for this part of the assignment. Just sit back, enjoy, and celebrate having
gotten everything working!
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(Optional) Problem Six: Extensions
There are many, many ways you could do extensions on this assignment. Here are a few:

• Combine: If you gather numerical data from the real world, it typically has lots of increasing and
decreasing runs within it. For example, if you measure peak temperatures each day of the year,
you’ll find that there’s a lot of increasing runs as we move from spring to autumn, and there’s a lot
of decreasing runs as we move from autumn to spring. Many sorting algorithms are designed to
work well in these sorts of cases. One, natural mergesort, works by splitting the input array into a
sequence  of  already-increasing  or  already-decreasing  runs,  then  repeatedly  merging  them to-
gether. Another,  Timsort, is a more advanced algorithm that combines these sorts of techniques
with a few others. Try implementing one of those algorithms and compare its performance against
heapsort or mergesort on some real data sets. What do you find?

• Priority Queue: There are so many different ways to implement priority queues, of which the bi-
nary heap is only one. Other approaches include binomial heaps, pairing heaps, leftist heaps, Fi-
bonacci heaps, hollow heaps, thick heaps, and randomized meldable heaps. These other styles of
heaps are designed to efficiently support additional operations on heaps, such as meld, which effi-
ciently merges together two heaps, or decrease-key, which lowers the priority of an existing ele-
ment in the heap, essentially bumping it up in line. Pick one of these other approaches, research
it, and put together your own implementation.

• Streaming Top-k: The streaming top-k algorithm is an example of a streaming algorithm, an algo-
rithm that works on a data stream and tries to keep its memory footprint low. Streaming algo-
rithms are an active area of research in algorithms and data structures, and there are some really
beautiful ones out there. The count-min sketch, for example, lets you approximate how many times
you’ve seen various elements in the data stream without actually storing everything you’ve encoun-
tered. Research a streaming algorithm and code up your own implementation.

• Data Sagas: This assignment builds up to exploring data sets with these sorts of algorithms to see
what you find. So go out there and find a fun data set to explore! Get some data and tell us a good
story about it. Which data set did you grab? Where did you find it? What did you find when you
looked in that data set?

Submission Instructions
Once you’ve finished writing up your solution, submit these files:

• Combine.cpp

• res/ShortAnswers.txt

• HeapPQueue.cpp and HeapPQueue.h. (Don’t forget the header file!)

• TopK.cpp.

If you edited any of the other files in the course of adding extensions to the base assignment, please be
sure to include them as well.

Good luck, and have fun!
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